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Abstract – In this letter, we present the first experimental study of bridge structures in three-
dimensional dry granular packings. When bridges are small, they are predominantly “linear”, and
have an exponential size distribution. Larger, predominantly “complex” bridges, are confirmed to
follow a power-law size distribution. Our experiments, which use X-ray tomography, are in good
agreement with the simulations presented here, for the distribution of sizes, end-to-end lengths,
base extensions and orientations of predominantly linear bridges. Quantitative differences between
the present experiment and earlier simulations suggest that packing fraction is an important
determinant of bridge structure.

Copyright c© EPLA, 2013

The study of random granular packings remains an
active research field [1]. For packings containing frictional
grains, it is now well established that cooperative struc-
tures such as bridges, are ubiquitous: these are defined
as collective structures where neighboring grains rely on
each other for mutual stability [2]. In other words, bridges
are structures within a random close packed deposit that
are inconsistent with the results of sequential deposition.
The word bridge is descriptive (arch would be equally
valid) and is used widely within powder and bulk process-
ing. Bridges are a measureable property of complex three-
dimensional granular structures and so their investigation
can help build a more complete picture of the relationship
between deposition processes and deposit structures.
Apart from their intrinsic interest, bridges are inti-

mately related to the phenomenon of compaction [3]; it
has been shown that much of the compaction to high
densities in shaken packings occurs via the coopera-
tive dynamics of bridge collapse [4]. Bridges can be
further classified [5] as linear or complex (see fig. 1),
depending on the topology of their backbones or contact
networks: complex bridges have backbones with loops
and/or branches, while linear bridges do not. Their
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Fig. 1: (Color online) (a) A typical linear bridge. (b) The
backbone of the linear bridge shown in (a). (c) A typical
complex bridge. (d) The backbone of the complex bridge shown
in (c).

dynamical implications are equally interesting: it has
been suggested that grain motion close to the jamming
transition [6] is via the motion of “dynamic linear
chains” [7,8], which are akin to linear bridges [5]. Force
networks in anisotropically sheared static packings [9,10]
show fractal dimensions similar to those of linear bridges
formed under gravity, thus reinforcing connections that
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have already been made [3,11,12] between linear bridges
and force chains. It should be emphasised that these
connections are still somewhat qualitative, and that the
precise characterisation of the relationship between force
chains and bridges is an important and emergent research
area. That there must be such a connection is evident:
bridges are structures within a granular packing, whereas
force chains involve combinations of complex interparticle
forces constrained by the structure. While the common
element is the underlying contact network, this alone does
not define force chains —in that many force networks
are consistent with a mechanically stable structure
containing bridges. From this point of view, studies
of force chains and bridges are necessarily complementary
in nature, and the study of bridges forms a valuable
constraint on possible structures involving force chains.
Recent experimental advances have allowed for the non-

invasive imaging of structure in dry granular media, using
for example magnetic resonance imaging or positron emis-
sion tomography [13,14]. Although interesting attempts
have been made to use these tools to characterise force
chain distributions, they rely on indirect geometric
measures of, say force chain lengths [15], rather than
direct measurements of force. Bridge structures have
also recently been probed experimentally in colloidal
packings [16] and compared with the results of computer
simulations of shaken (dry) granular media [5]; while the
experimental results are of interest in and of themselves,
it has to be remembered that colloids are governed by
thermal energy, while temperature does not govern the
dynamics of dry granular media. Instead, a perturbation
such as shaking or tapping has to be applied [17] in order
to generate particulate motion in dry granular packings;
such athermal perturbation could conceivably generate
its own particularities in bridge structure, absent in the
colloidal case. It is therefore important to characterise
the statistics of bridges in the steady state of shaken
dry granular packings in 3d and to compare them with
the results of computer simulations modelling exactly the
same physical situation; this is the main purposes of this
letter, where we use direct and non-invasive tomographic
measurements to characterise bridge structures in dry
granular packings.
In the experiments, two packings (one monodisperse

(Duke Scientific, USA) and one polydisperse) of glass
beads were used, with packing fractions of 0.623 and
0.597, respectively. The glass beads had diameters of
200± 15µm and 300± 50µm, respectively: there were
∼18000 beads in the monodisperse packing and ∼5000
beads in the polydisperse packing. Both packings were
tapped for more than 10000 cycles using a commercial
shaker to ensure that a steady state had been reached.
The tapping protocol involved a single 30Hz sine wave at
a rate of 1Hz with an effective tapping amplitude of 2.82 g.
An X-ray microtomography machine (MicroXCT-200,
Xradia Inc., USA) was used to make structural measure-
ments, with 1200 projection images taken on the samples.

Fig. 2: (Color online) Image processing steps from the raw
reconstructed image to the segmented image using a marker-
based watershed algorithm.

The effective spatial resolution of the detector was
6.88× 6.88µm2 after optical magnification (2×). The
tomography-reconstructed 3d images were analyzed
by a marker-based watershed imaging segmentation
technique [18,19] to ensure an accurate determination of
contacting neighbours which is crucial for the identifi-
cation of bridges. The watershed algorithm represents a
grey-scale image as a topological surface, where the grey-
scale value of each pixel is interpreted as its “altitude”.
The initial image is separated into a binary image which
comprises a “solid” area and a background; the key step
is to transform each solid area into a single “catchment
basin”. Before this process is carried out, the standard
“erosion” and “dilation” steps were carried out to remove
the noise. Afterwards, a “reconstruction” step is invoked
before the distance transform (“bwdist”) is performed to
compute the nearest distance between two pixels corre-
sponding to the background, thus identifying the limits of
the solid phase, or “catchment basin”. The edges of each
solid phase, i.e., each grain, are identified as a watershed
ridge line (see white lines in last color panel of fig. 2).
The identification of bridges in experiment and simu-

lation followed the overall algorithm used in [5,11,20,21].
Sphere coordinates at the end of the stabilization phase
are transformed into a list of at least three contacts for
each particle. Each particle in a contact list is next identi-
fied with a unique set of three other particles that provide
its supporting base, using a criterion favouring the stabi-
lizing triplet with the lowest centroid. Once these stabi-
lizing triplets are identified, one looks for sets of particles
that appear in each other’s stabilizing triplets: these are
clearly particles which are mutually stabilizing, and thus
identified with bridge particles. Finally, clusters of mutual
stabilizations can be identified, using a linked list structure
as in other aggregation applications, to reveal a unique set
of bridges in a static close packing. The statistics of these
clusters can be used to get the kind of information on
bridge structure such as sizes, orientations and topologies,
referred to below.
Our experimental findings suggest that linear bridges

predominate for sizes of up to n≈ 10, which are
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Fig. 3: (Color online) (a) Log-linear plot of experimental size
distributions P (n)lin of linear bridges: the full and dashed
lines represent exponential-law fits for mono- and polydisperse
beads, respectively. The corresponding exponent values are α=
0.45± 0.02 (monodisperse) and α= 0.49± 0.04 (polydisperse).
(b) Log-log plot of experimental size distributions P (n)comp for
all bridges. The power-law fits to the largely complex bridges
for n� 7 yield τ = 2.1± 0.2 (monodisperse) and τ = 1.9± 0.4
(polydisperse). (c) Log-linear plot of size distributions P (n)lin
for linear bridges in packings at different densities φ from
computer simulations of shaken monodisperse spheres. The
black line is an exponential-law fit as in panel (a) to the
results for φ= 0.62, yielding α= 0.46± 0.01. For the three
lower densities, data collapse is obtained, giving α= 0.49±
0.02. (d) Log-log plot of size distributions P (n)comp for all
bridges in packings at different densities φ, from computer
simulations of shaken monodisperse spheres. The black line
represents a power-law fit for n� 7 as in panel (b) for φ= 0.62,
giving τ = 2.6± 0.1. For φ= 0.60, 0.59, 0.58, τ = 1.8± 0.1, 1.7±
0.1, 1.5± 0.1, respectively. The exponent τ appears to vary
strongly with packing fraction.

characterised by a simple exponential distribution
P (n)lin ∼e−αn (fig. 3(a)). For larger sizes n, complex
bridges predominate, which are in turn characterised
by a power-law distribution P (n)comp ∼n−τ (fig. 3(b)).
These results are robust to the presence of polydispersity:
remarkably, even the associated exponents agree —within
error bars— in the two cases, with α= 0.45± 0.02 and
τ = 2.1± 0.2 (monodisperse) and α= 0.49± 0.04 and
τ = 1.9± 0.4 (polydisperse).
The above results are in broad qualitative agreement

with earlier simulation results on simple and complex
bridges [5], which is in itself quite good. There are,
however, quantitative differences in the values of the
exponents measured. We speculate that this could be
due to the difference in packing fractions φ considered
in the earlier simulations and in the current experiment
(0.56 and 0.62, respectively); since packing fraction is a
fundamental structural descriptor of granular media, it
could reasonably lead to quantitative, if not qualitative
differences in the size distribution of granular bridges.

The simulations described below investigate this issue, and
confirm this dependence.
Accordingly, we generated configurations corresponding

to φ= 0.58, 0.59, 0.60 and 0.62 using a well-established
hybrid Monte Carlo sphere-shaking algorithm [22]. The
simulations were performed on 1630 spheres in a rectan-
gular cell with lateral periodic boundaries and a hard
disordered base, using 100 different random initial
configurations per shaking amplitude. Size checks were
performed, and qualitatively similar configurations were
obtained for a couple of different system sizes. Care
was taken to use stable configurations in the steady
state, saving about 200 stable configurations (picked out
every 500 cycles to avoid correlation effects) for bridge
identification and analysis. Our findings are shown in
figs. 3(c) and (d) where we find that there continues to
be excellent qualitative agreement between experiment
and simulation. Quantitatively, we observe an interesting
trend: the agreement between experiment and simula-
tion gets better as the corresponding packing fractions
converge. In fact for φ= 0.62, our simulations yield values
of α= 0.46± 0.01 and τ = 2.6± 0.1 (see black line in
figs. 3(c) and (d)). The perfect agreement within error
bars for the α values between experiments and simulations
conducted at the same packing fraction suggests that this
is the most important parameter controlling the behaviour
of linear bridges. We also notice that for the three lower
packing fractions, the exponent τ shows a consistently
increasing trend as a function of φ. However, at φ= 0.62,
the exponent τ from experiment is more compatible with
the trend than that from simulation. This is possibly due
to the onset of ordering in the simulations [1].
All these trends persist in measurements of the other

bridge structure descriptors considered below; in the
following we focus on linear bridges, leaving the detailed
examination of complex bridges to future work. The first of
our descriptors is the base extension, whose definition we
review. If all possible connected triplets of base particles
for a particular bridge are considered, the vector sum of
their normals is defined to be the direction of the main
axis of the bridge, typically inclined at some angle Θ (the
orientation angle) to the z-axis. The base extension b (see
fig. 4) is defined as the radius of gyration of the base
particles about the z-axis, and is a measure of the spanning
or jamming potential of a bridge [5].
In fig. 5, we present experimental and simulation results

obtained for the base extension distributions of linear
bridges. Figures 5(a) and (c) correspond, respectively, to
experimental and simulation plots of p(b|n) (normalised
probability distributions of b conditional on bridge size
n) vs. b for different bridge sizes n. They are qualitatively
similar, showing sharply peaked distributions which flat-
ten out with increasing bridge sizes, as seen in earlier simu-
lations [5]. Figures 5(b) and (d) correspond, respectively,
to experimental and simulation plots of log p(b) (cumu-
lative probability distribution of b) vs. the normalised
variable b/〈b〉, with 〈b〉 the mean extension of bridge
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Fig. 4: (Color online) The base extension of a bridge.

Fig. 5: (Color online) Probability distributions, for monodis-
perse beads, of base extensions b for linear bridges. (a) Exper-
imental plot of p(b|n) vs. b for different n. (b) Experimental
plot of the log of the cumulative distribution, log (p(b)) vs.
b/〈b〉. (c) Plot of p(b|n) vs. b for different n, generated from
computer simulations of shaken monodisperse spheres. (d) Plot
of log (p(b)) vs. b/〈b〉 from computer simulations of monodis-
perse sphere packings at different densities.

bases. Both show the exponential tail in the distribution
function noted in the results of earlier simulations [5],
suggesting that bridges with small base extensions are
not favored. This result appears to be robust both with
respect to polydispersity in the experimental results and
packing fractions in the simulations. It also reinforces
earlier suggestions [3] of deep connections between force
chains and linear bridges: the cumulative distributions
of force chains in anisotropically sheared granular
systems [10,23] as well as MD simulations of analogous
particle packings [24,25] show very similar exponential
tails. Recent simulations have directly confirmed the
connection between force chains and linear bridges, by
suggesting that forces are principally transmitted by
particles in bridges [12].

Fig. 6: (Color online) Plot of the (log of the) end-to-end
length, lnRn vs. ln(n− 1) for linear bridges in monodisperse
sphere packings. The full lines represent power-law fits. For
the experimental plot ν = 0.61± 0.02 (a), while simulations for
all the densities give ν = 0.60± 0.01 (b).

Another important quantity related to a linear bridge
of size n is obviously its “span”, i.e., its rms end-to-end
length Rn. Our results for this are presented in fig. 6(a)
(experiment) and fig. 6(b) (simulations). As expected,
we find the scaling law Rn ∼nν in both experiment and
simulation. We obtain exponent values ν = 0.61± 0.02
from experiment and ν = 0.60± 0.01 from simulations.
Again, the agreement between experiment and simulations
is remarkable; additionally, we do not observe a strong
dependence on packing fraction. Given that ν ∼0.59 for a
3d self-avoiding random walk, this suggests that the linear
bridges that we have examined here look —within error
bars— exactly like self-avoiding walks in three dimensions.
Finally, we examine via experiment and simulation,

the normalised distribution for the mean angle Θ made
by a linear bridge with the z-axis, as well as that
of its variance [5] in fig. 7. In figs. 7(a) and (c), we
plot, respectively, experimental and numerical results for
p(Θ|n), the orientational distribution conditional on n.
The cumulative distributions p(Θ), also plotted in these
figures, closely resemble each other as well as confirming
earlier results [5]. Notable features are a peak around 20◦

as well as the decrease of Θ with increasing bridge size,
which [5] suggests that larger linear bridges form domes.
In figs. 7(b) and(d) we plot the variance of the mean
orientational angle,

〈
Θ2
〉
, against size n. According to [5],〈

Θ2
〉
obeys

〈
Θ2
〉
(s) = 2σ2eq

as− 1+ e−as
a2s2

+
(
σ20 −σ2eq

) (1− e−as)2
a2s2

,

(1)

where σ2eq is the equilibrium value of the variance of the
link angle. This is plotted as the full line in the figures,
where the symbols represent results for experiment and
simulation, respectively. These look similar to each other,
and also to the results of earlier simulations [5].
Before concluding, we mention that while we hope our

investigations of bridge structures might shed some light
on possible relationships between structural signatures
and force networks in the future, we do not for the
present include any explicit force information directly.
Our investigations of structure are in addition to ongoing
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Fig. 7: (Color online) Orientational distributions of linear
bridges in monodisperse systems from experiment and simu-
lation. (a) Plot of the orientational distribution conditional
on size n, p(Θ|n) vs. Θ, obtained experimentally. (b) Exper-
imental plot of the variance of Θ,

〈
Θ2
〉
as a function of n:

the full line shows the fit to eq. (1). (c) Plot of the orienta-
tional distribution conditional on size n, p(Θ|n) vs. Θ, obtained
from computer simulations of shaken spheres. (d) Computer-
simulation–generated plot of the variance of Θ,

〈
Θ2
〉
as a func-

tion of n: the full line shows the fit to eq. (1), as in (b).

force chain investigations [26], since stable structures are
a constraint on force chains, and the two taken together
might lead some day to the emergence of a holistic picture
of heterogeneities in granular systems.
The experiments reported in this letter show satisfy-

ing qualitative agreement with the results of present and
earlier [5] simulations, in the sense that the forms of distri-
butions of quantities ranging from sizes to orientations and
base extensions are robustly the same in every case. This
is already quite good for such a complex field, and suggests
that there is truth in the idea of bridges being good charac-
terisers of spatial heterogeneities in granular media. Quan-
titative differences, where these exist, between the current
experiment and earlier simulations [5] have been success-
fully ascribed to the fact that the data were taken at rather
different packing fractions φ: the simulations reported in
this paper have been conducted at a range of packing
fractions and manifest this dependence, such that there is
excellent agreement between simulation and experiment at
matching φ. This reinforces the intuitive idea that packing
fractions should influence the details of bridge structure
(while leaving the qualitative features unchanged); higher
packing fractions, for instance, probably constrain linear
bridges to be fully three-dimensional rather than leaving
them the choice to be planar. We might expect that for
complex bridges, the factors at play (apart from the robust
power-law size distribution) may indeed be more complex:
since these are branched structures, we might expect that
the coordination number might have an important role to
play in precise quantitative measurements of structure, as

indicated by our measurements of the exponent τ . We
hope to carry out a detailed study of complex bridges in
future work.
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