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Using computed x-ray tomography we determine the three dimensional (3D) structure of binary hard
sphere mixtures as a function of composition and size ratio of the particles q. Using a recently introduced
four-point correlation function we reveal that this 3D structure has on intermediate and large length scales a
surprisingly regular order, the symmetry of which depends on q. The related structural correlation length
has a minimum at the composition at which the packing fraction is highest. At this composition also
the number of different local particle arrangements has a maximum, indicating that efficient packing of
particles is associated with a structure that is locally maximally disordered.
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Hard sphere (HS) systems play a paramount role in
statistical mechanics and material science since they are
important models to study the behavior of many-particle
systems like liquids, colloids, and metallic glasses [1–4].
Also in the domain of granular materials many experi-
mental and theoretical studies have used HS-like systems
since granular particles usually have a high modulus and
the simplicity of the particle shape allows us to probe the
influence of friction and roughness on the properties of
granular assemblies [5,6]. Since for HS the interaction
energy between the particles is trivial, the properties of such
systems is encoded in their structure and hence many
previous studies have aimed to characterize it on various
length scales [1,4,5,7,8]. Many of these investigations
focused on one-component systems since this choice
facilitates the description of the packing structure [1,7].
However, in the context of the glass transition one also
often uses weakly polydisperse samples or a slightly
asymmetric binary mixture, since this suppresses the
crystallization of the liquid while keeping its structure
close to the well understood one-component case [9,10].
These studies have shown that, depending on the compo-
sition and the packing fraction, the local structure, i.e.,
the first nearest neighbor shell, shows a surprisingly rich
variety [10–15]. In contrast to these almost one-component
systems, the case of mixtures in which the particles have a
size ratio that differs significantly from unity has been
studied much less [16–22]. Understanding this structure is,
however, important since such highly asymmetric systems
are relevant for describing the behavior of real granular
materials, which are usually highly polydisperse, as well
for the glass-forming ability of multicomponent systems
like metallic glasses in which the atoms can have very

different radii [23–29]. In addition it has recently been
found that such strongly asymmetric mixtures can have
local structures with unexpected symmetries which can,
e.g., be used to create novel materials via self-assembly
[30]. The main reason for our lack of understanding of
these systems is that their theoretical description is sig-
nificantly more complex and experiments on colloidal
systems are hampered by the precise control of size ratio,
while granular systems are prone to the phenomenon of
phase separation [31,32]. A further problem that one faces
with these systems is the difficulty to characterize their
structure on intermediate length scales since the presence of
two particle sizes gives rise to a highly complex distance
dependency of the partial radial distribution functions, i.e.,
the standard quantities that are used to characterize the
structure of many-body systems [19,33–35]. Because of
these difficulties there is at present little insight on how the
size ratio or the composition affects the packing density or
the structure of asymmetric HS systems.
In this work we use the computed tomography (CT)

technique to probe how composition and size ratio affect
the packing fraction of a binary granular system. Using a
recently developed method to characterize the structure
of disordered systems at intermediate and large length
scales we are able to show that a high packing fraction is
intimately related to the presence of a short structural
correlation length.
Our system is a binary mixture of particles (acrylonitrile

butadiene styrene plastic), denoted in the following as “big”
(b) and “small” (s) particles, with size ratio q ¼ db=ds,
where db and ds ¼ 3.0 mm are the respective diameters.
The number fraction of small particles will be denoted by x.
We consider two size ratios: q ¼ 1.33, which corresponds
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to a mixture that has particles with similar size, and
q ¼ 2.0, i.e., the particle sizes are significantly different.
The particles are mixed and then poured into a cylinder
(diameter is 180 mm and filling height is 200 mm), the
walls of which have been covered randomly with half
spheres of diameter 4 mm to prevent layering of the
particles. Subsequently, the cylinder is placed in a medial
CT scanner and the particle positions are obtained with a
precision of about 0.01ds. More details on the experimental
procedure are given in Supplemental Material (SM) [36].
Depending on the concentration x we have between 22 000
and 169 000 particles in the cylinder.
We analyze the 3D structure of the samples by intro-

ducing a local coordinate system [42]. For this, one picks
any three particles of the same type and which are nearest
neighbors, see SM [36], Fig. S5(a). We define the position
of particle No. 1 as the origin, the direction from particle
No. 1 to No. 2 as the z axis, the plane containing the three
particles as the x-z plane and the y axis is orthogonal to it.
This local reference frame allows us therefore to determine
the 3D distribution of the particles that have a distance r
from the central particle, i.e., a four-point correlation
function.
In Fig. 1(a) we show for different values of r the

distribution ρbbðr⃗Þ, i.e., the 3D distribution of the density
of the b particles if at the center we also have a b particle
(q ¼ 1.33 and x ¼ 0.47). The snapshots demonstrate that
ρbbðr⃗Þ is highly anisotropic in that it shows, at a given r,

spots of high intensity that are arranged in a regular
manner on the surface of the sphere. Depending on r,
the geometrical arrangement of these spots has an icosa-
hedral symmetry, Figs. 1(a2) and 1(a4) or a dodecahedral
one, Figs. 1(a1) and 1(a3), with the high intensity spots for
one symmetry corresponding to the low intensity spots in
the other one, i.e., the two symmetries are dual (see SM
[36]). This result is reasonable since the local wells formed
by three neighboring particles at a given r will give rise to a
high density at the distance of the subsequent layer [42].
Our finding regarding this regular alternation between these
two platonic symmetries is thus the first experimental
evidence that the structural order found in Ref. [42] does
indeed exist in real systems. We also mention that the same
alternating sequence is found for other compositions and
other types of density fields [e.g., ρsbðr⃗Þ, in which one has a
s particle in the center], although the symmetries of the
structure might be a bit more fuzzy.
For the q ¼ 2.0 system the field ρbbðr⃗Þ is shown in

Fig. 1(b) and one sees that the spatial distribution is similar
to the one of the q ¼ 1.33 system, i.e., two alternating
symmetries that are dual to each other. Figure 1(c) show
that if the central particle is a s particle, the density field has
no longer an icosahedral-dodecahedral symmetry, although
one still recognizes the presence of two alternating sym-
metries with increasing r. The first pattern has two zones
of high intensities on the left and right of the sphere
surface, connected by a broad band at the top of the sphere
[Figs. 1(c2) and 1(c4)] while the second pattern has three
prominent bands orthogonal to the x-z plane [Figs. 1(c1)
and 1(c3)], see Movie 1 in Supplemental Material [36].
Thus, these two spatial distributions have less symmetry
than the ones found for q ¼ 1.33, indicating that increasing
q results in a decrease of the order at intermediate and
large r.
The standard way to characterize the structure of many-

body systems is by means of the partial radial distribution
functions gαβðrÞ, with α; β ∈ fb; sg, or the partial static
structure factors [3]. Supplemental Material Figs. S5
and S6 [36] show that for q ¼ 2.0 it is difficult to interpret
the r dependence of these functions due to the presence
of a multitude of peaks, the height of which show a
complicated r dependence, in agreement with previous
studies [19,34,35]. Since also the dependence of gαβðrÞ
on composition is complex, Fig. S6, it is not possible to
extract from these functions a physically meaningful decay
length that could be used to describe the range of the
structural order. Hence, one concludes that the projection
of the complex 3D structure found in Fig. 1 on the one-
dimensional quantity gαβðrÞ leads to a severe loss of
information and thus it is necessary to study directly the
four-point correlation function.
To quantify the anisotropic density distribution ραβðr⃗Þ

we decompose it into spherical harmonics Ym
l ðθ;ϕ; rÞ:

ραβðθ;ϕ; rÞ ¼
P∞

l¼0

P
l
m¼−l ρ

m
αβ;lðrÞYm

l ðθ;ϕÞ, where θ

FIG. 1. Distribution of particles in three dimensions in a shell of
thickness 0.5 ds. (a1)–(a4) bb correlation for the x ¼ 0.47
mixture (q ¼ 1.33 system); (b1)–(b4) bb correlation for the
x ¼ 0.55 mixture (q ¼ 2.0 system); (c1)–(c4) sb correlation
for the x ¼ 0.55 mixture (q ¼ 2.0 system).
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and ϕ are the angular variables and the expansion
coefficients ρmαβ;l are given in SM [36]. We then use the
square root of the angular power spectrum, Sαβðl; rÞ ¼
½ð2lþ 1Þ−1Pl

m¼−l jρmαβ;lðrÞj2�1=2, to characterize the
anisotropy of the density distribution.
Figure 2(a) presents for q ¼ 1.33 and x ¼ 0.47 the r

dependence of Sαβ for the four possible combinations of the
field. These curves are for l ¼ 6, since Sαβðl ¼ 6; rÞ has the
largest signal (see SM [36]) due to the large number of
angles around 60° in the icosahedron (dodecahedron)-like
structure of the density field, see Fig. 1(a). We see that these
functions show an oscillatory behavior with an envelope
that decays in an exponential manner, in agreement with the
results from Ref. [42] where the origin of these oscillations
have been discussed. Thus, the slope of the envelope can be
used to define a structural length scale ξ which will be
studied in the following. Since this slope is independent of
the function considered (see SM [36]), we discuss in the
following its average value ξ.
Figure 2(b) shows SbbðrÞ for the q ¼ 1.33 system at

different concentrations x and one sees that the position
of the peaks depends only mildly on x but that their
intensity changes rapidly with increasing x. This indicates
that the geometry of the structure, i.e., the icosahedron-
dodecahedron sequence, is present up to relatively high
concentration of the small particles, but that the structures
are less pronounced.
Figure 2(c) shows SbbðrÞ for the q ¼ 2.0 system at

x ¼ 0.55. The value of l is also 6, since the signal is again
the strongest. However, if the coordinate system is centered
on a s particle we find that the functions SsαðrÞ have the

largest signal for l ¼ 3, a result that is consistent with
the fact that the density field is no longer given by an
icosahedra-dodecahedral symmetry, see Fig. 1(c). Despite
the different values for l, we see that the decay length of the
signal is independent of the field considered and thus can
be used as a robust indicator for the structural order.
Figure 2(d) shows SbbðrÞ for the q ¼ 2.0 system for

different values of x. We recognize that the x dependence of
the curves is smooth and that the main effect of changing
composition is that the slope of the envelope changes and is
nonmonotonic in x. Thus, we can conclude that, in contrast
to the partial radial distribution functions gαβðrÞ, the
quantity Sαβðl; rÞ allows us to quantify in a direct manner
how the structure on intermediate and large scale evolves
with composition.
Figure 3(a) shows the x dependence of the length scale ξ

for the q ¼ 1.33 system and one recognizes that ξ−1 shows
a maximum at around xmax ¼ 0.7, i.e., at this concentration
the structure is maximally disordered. [Note that here we
express ξ in terms of the mean particle diameter dmean ¼
ð1 − xÞdb þ xds so that the x ¼ 0 and x ¼ 1 systems
have the same normalized length scale.] For (quasi-)one-
component systems it is common to determine the struc-
tural coherence length from σS, the width of the first peak in
the static structure factor [2]. In SM [36] we show that this
is indeed feasible for the q ¼ 1.33 system while for larger q
this is not possible since there is not always a main peak.
Also included in Fig. 3(a) is the x dependence of σS and
one recognizes that this data is qualitatively very similar to
the one of ξ−1 giving evidence that these two quantities
are indeed closely related to each other. Also shown
in the graph is the packing fraction φ defined by
φ ¼ P

i vi=
P

i vvoro;i, where vi and vvoro;i are, respec-
tively, the volume and radical Voronoi volume of particle i
[43]. Since φðxÞ shows a maximum close to xmax we have a
first indication that a small correlation is associated with a
high packing fraction.
For the q ¼ 2.0 system, Fig. 3(b), we find that ξ−1 has a

maximum which is shifted to larger x, i.e., xmax ≈ 0.8, and
also the maximum of the packing fraction moves to larger x
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and its height is increased, consistent with theoretical
predictions [17,20,21]. In agreement with the results for
the q ¼ 1.33 system, the location of the maximum in φðxÞ
coincides with the one of ξ−1, giving further evidence that
these two quantities are closely related.
To understand the connection between φ and ξ one has to

recall that one-component HS-like systems can have a local
packing fraction that is significantly higher than the global
packing fraction in that, e.g., the central particle of an
icosahedron has φico ¼ 0.74, thus well above the density of
random close packing, φrcp ≈ 0.64 [2]. The reason for this
difference is that icosahedra cannot tile space and hence the
densely packed local structures have to be supplemented
with structures that are packed less densely, making that
φrcp < φico [1,2]. The presence of a second kind of particle
has two effects on the packing. (1) Big particles can
increase their local packing density by having small
particles as nearest neighbors since the minimum distance
between a big and small particle is less than the one
between two b particles, resulting in a decrease of the
Voronoi volume. (Note that we refer here to “nearest
neighbors” as the particles sharing a face in the radical
Voronoi cell, and this should not be confused with particles
at contact, see SM [36] for details.) This trend is shown in
Fig. 4 for the two systems in that we find a slow rise of φb
with x and the increase is faster for large q. (2) For small
particles the presence of the b particles has the opposite
effect, i.e., the local packing fraction φsðxÞ decreases with
the addition of the big particles because a big particle that is
close to a small one will strongly increase the Voronoi
volume of the latter, see Fig. 4. The total packing fraction is
given by

φðxÞ ¼ NbSb þ NsSs
NbVb

voro þ NsVs
voro

¼ φbðxÞφsðxÞ½q3ð1 − xÞ þ x�
φsðxÞq3ð1 − xÞ þ φbðxÞx

;

ð1Þ

where Nα and Sα are the number and volume of particles of
type α, respectively. Since φs shows a stronger x depend-
ence than φb, one has a maximum in φðxÞ at xmax > 0.5, in
agreement with the data from Fig. 3.
Note that φb (and φs) is an average packing fraction, i.e.,

it is the weighted average over particles that have different
local environments. In order to maximize φb one thus needs
that the local environments that are frequent do (i) have a
high packing fraction and (ii) can be joined together
without loosely packed interfaces between them. This latter
condition is met most easily if there is a large number of
possible local environments that have a high packing
density since this allows for a greater flexibility in the
assembly of the global packing. To estimate the number of
such local environments at a given x we probe CαβðkÞ, the
probability that a particle of type α has exactly k nearest
neighbors of type β. Figure S13 shows that these distri-
butions are Gaussian-like and thus their standard deviation
ωαβ can be taken as a measure for the variety of the local
environments of a given particle type. The x dependence of
ωbb is included in Fig. 3 as well and one sees that this curve
does indeed match very well the x dependence of φ.
[Figure S14 demonstrates that the shape of ωαβðxÞ is
independent of the choice of α and β and Fig. S15 that
the statistically relevant local environments do indeed have
a high packing fraction.] Thus, this supports the view that in
order to have a high packing fraction one needs indeed a
large variety of local structures since this allows us to create
a packing that has high density everywhere. Since these
local structures are by definition different, the resulting
global structural correlation length will be small. Hence,
this rationalizes why φðxÞ and ξ−1 peak at the same
concentration xmax, see Fig. 3.
In this work we have used a CT scanner to determine the

structural properties of granular packings on intermediate
and large length scales. Because of the preparation protocol
and the existence of friction, these structures are not exactly
the same as the frictionless packings studied in theoretical
works [16,20,21], but they do correspond to packings that
occur in real granular systems. Using a novel method to
characterize the structure in 3D, we are able to determine
for the first time a static length scale ξ even for strongly
asymmetric mixtures. The fact that ξ−1ðxÞ shows a maxi-
mum at the same concentration at which the maximum
packing fraction occurs indicates that in multicomponent
disordered systems efficient packing is related to a short
correlation length. Surprisingly, the presence of a short
correlation length does not exclude the possibility that the
structure shows order even on intermediate length scales,
see Fig. 1. The nature of this order depends on q and can
be expected to influence the glass-forming ability of the
system [44,45], calling for further studies to clarify this
dependence. Note that the presence of the symmetry shown
in Fig. 1(c) has not been documented before, demonstrating
that probing the structure in 3D is a powerful approach
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tively. Error bars are smaller than the size of the symbols.
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which allows to characterize the structure of many-body
systems that so far could not be described in an insightful
manner. Exploiting this approach to multicomponent sys-
tems will thus allow not only to advance our understanding
of disordered systems but also facilitate the creation of novel
self-assembled materials and glass-forming systems [30].
Finally, we mention that our result on the existence of a

maximum in φðxÞ, directly related to the competition
between opposite trends for the local packing density of
the big and small particles, calls for studies that connect
this observation to the formalism of the Edwards measure
for granular systems [6,46]. Since this measure is based on
the entropy related to the global packing density, it is
important to probe how the mentioned opposite trends are
reflected in this theoretical framework, i.e., to see whether
it is possible to rationalize our results within a thermo-
dynamic approach.

We thank H. Tanaka and F. Zamponi for useful discus-
sions. W. K. is senior member of the Institut Universitaire
de France. The work was supported by the National
Natural Science Foundation of China (No. 11974240), the
Shanghai Science and Technology Committee
(No. 19XD1402100), and the China Scholarship Council
Grant No. 201606050112.

H. Y. and Z. Z. contributed equally to this work.

*walter.kob@umontpellier.fr
†yujiewang@sjtu.edu.cn

[1] G. Parisi and F. Zamponi, Rev. Mod. Phys. 82, 789 (2010).
[2] K. Binder and W. Kob, Glassy Materials and Disordered

Solids: An Introduction to Their Statistical Mechanics
(World Scientific, Singapore, 2011).

[3] J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids
(Academic Press, New York, 2013).

[4] S. Torquato, Random Heterogeneous Materials: Micro-
structure and Macroscopic Properties (Springer, New York,
2002).

[5] C. Song, P. Wang, and H. A. Makse, Nature (London) 453,
629 (2008).

[6] Y. Yuan, Y. Xing, J. Zheng, Z. Li, H. Yuan, S. Zhang, Z.
Zeng, C. Xia, H. Tong, W. Kob, J. Zhang, and Y. Wang,
Phys. Rev. Lett. 127, 018002 (2021).

[7] K. Watanabe and H. Tanaka, Phys. Rev. Lett. 100, 158002
(2008).

[8] S. Torquato and F. H. Stillinger, Rev. Mod. Phys. 82, 2633
(2010).

[9] W. Kob and H. C. Andersen, Phys. Rev. E 51, 4626
(1995).

[10] H. Tong and H. Tanaka, Phys. Rev. X 8, 011041 (2018).
[11] M. Clusel, E. I. Corwin, A. O. Siemens, and J. Brujić,

Nature (London) 460, 611 (2009).
[12] D. Coslovich and G. Pastore, J. Chem. Phys. 127, 124504

(2007).
[13] C. P. Royall and S. R. Williams, Phys. Rep. 560, 1 (2015).

[14] R. S. Farr and R. D. Groot, J. Chem. Phys. 131, 244104
(2009).

[15] V. Ogarko and S. Luding, Soft Matter 9, 9530 (2013).
[16] J. Dodds, Nature (London) 256, 187 (1975).
[17] P. Richard, L. Oger, J. Troadec, and A. Gervois, Physica

(Amsterdam) 259A, 205 (1998).
[18] P. Richard, L. Oger, J. Troadec, and A. Gervois, Eur. Phys. J.

E 6, 295 (2001).
[19] A. Statt, R. Pinchaipat, F. Turci, R. Evans, and C. P. Royall,

J. Chem. Phys. 144, 144506 (2016).
[20] M. Danisch, Y. Jin, and H. A. Makse, Phys. Rev. E 81,

051303 (2010).
[21] I. Biazzo, F. Caltagirone, G. Parisi, and F. Zamponi, Phys.

Rev. Lett. 102, 195701 (2009).
[22] Y. Yuan, L. Liu, Y. Zhuang, W. Jin, and S. Li, Phys. Rev. E

98, 042903 (2018).
[23] C. Graf, D. L. Vossen, A. Imhof, and A. van Blaaderen,

Langmuir 19, 6693 (2003).
[24] K.W. Desmond and E. R. Weeks, Phys. Rev. E 90, 022204

(2014).
[25] S. R. Williams and W. van Megen, Phys. Rev. E 64, 041502

(2001).
[26] A. Imhof and J. K. G. Dhont, Phys. Rev. Lett. 75, 1662

(1995).
[27] E. Lázaro-Lázaro, J. A. Perera-Burgos, P. Laermann, T.
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