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Using particle trajectory data obtained from x-ray tomography, we determine two kinds of effective
temperatures in a cyclically sheared granular system. The first one is obtained from the fluctuation-
dissipation theorem which relates the diffusion and mobility of lighter tracer particles immersed in the
system. The second is the Edwards compactivity defined via the packing volume fluctuations. We find
robust agreement between these two temperatures, independent of the type of the tracers, cyclic shear
amplitudes, and particle surface roughness, giving therefore the first experimental evidence that the concept
of effective temperature is valid in driven frictional granular systems.
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Understanding disordered materials far from thermal
equilibrium is one of the biggest challenges in condensed
matter physics [1]. Many principles of equilibrium stat-
istical mechanics have proven to be valid for characterizing
the nonequilibrium behaviors of these systems, with the
concept of effective temperature playing an important role,
rather than the thermal bath temperature [2,3]. Various
studies have shown that the effective temperature is
useful for understanding the structural relaxation [4–7],
plasticity [8,9], and rheological properties of various non-
equilibrium disordered materials [10,11]. However, multi-
ple approaches exist to define an effective temperature, and
both the physical meaning and the relationship between
these temperatures have so far remained elusive [3].
Granular matter, which is an achetypical disordered

system ubiquitous in nature and engineering processes,
also needs a statistical mechanics framework that allows the
definition of an effective temperature [12]. It is found that
under steady external driving, granular systems evolve into
stationary packings with a mildly fluctuated packing
fraction (or packing volume) irrespective of preparation
history, reminiscent of the thermodynamic fluctuation of
thermal system at constant temperature [13,14]. In the
1990s, Edwards and collaborators introduced a statistical
mechanics framework for jammed granular packings based
on this observation [15]. According to their approach,
volume is postulated to be the quantity equivalent to energy
in thermal systems. It is further conjectured that jammed
packings of the same volume are equally probable,

validated so far only in numerical simulations of friction-
less packings [16–18]. Such an approach naturally leads to
the definition of entropy as the logarithm of the number of
all jammed states in the microcanonical ensemble, and a
compactivity χ that plays the role of the conventional
temperature can be defined accordingly [19]. Recent
experiments have demonstrated the validity of the
Edwards volume ensemble in frictional jammed granular
packings [20].
Another approach to define an effective temperature TFD

is based on the fluctuation-dissipation relation (FDR),
which has been widely investigated for granular materials
in the stationary state [21–25]. In the FDR, TFD relates the
diffusion and the mobility of a tracer particle over a period
of time t:

kBTFD ¼ h½rðtÞ − rð0Þ�2i
2hrðtÞ − rð0Þi=F ; ð1Þ

where r is the position of the particle and F is a weak
external force acting on the particle balanced by the drag
force in the stationary directional moving regime.
Simulations have shown that in frictionless jammed granu-
lar packings TFD is equal to χ [16,17], so that χ governs the
transport properties of these systems. However, there have
been no experimental studies investigating the relevance
between χ and TFD for frictional granular systems so far,
which is not only critical for the understanding of granular
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rheology, but also hampers the development of nonequili-
brium statistical mechanics in a broader sense [26,27].
In this Letter, we use x-ray tomography to determine the

compactivity χ as well as the TFD of a three-dimensional
granular system under quasistatic cyclic shear. In practice,
we measure χ from the microscopic volume fluctuations
within the disordered packings. Using hollow particles
(HP) with different lower mass densities as compared to the
background particles (BP), we measure TFD based on
Eq. (1) by tracking both the HPs’ directional motion due
to buoyancy and diffusive motion. We find that TFD and χ
agree with each other robustly for all the steady states
investigated.
We 3D print (ProJet MJP 2500 Plus, 0.032 mm reso-

lution) the HPs and BPs of the same plastic material
(VisiJet M2R-WT, ρ ¼ 1.12 × 103 kg=m3) and diameter
d ¼ 6 mm. For both HPs and BPs, we prepare particles
with two types of surface properties: a smooth surface and a
rough surface realized by uniformly decorating its surface
with 150 hemispheres of radius 0.04d, which mimics a
particle with very large surface friction. The HPs are lighter
than the solid BPs, and their mass difference is
Δm ¼ m0 −m, where m and m0 ¼ 0.1263� 0.0001 g
are the respective masses of HPs and BPs. We prepare
13 types of HPs for the systems with smooth surfaces with
Δm=m0 ∈ ½0.017; 0.484�, and five types of HPs for the
systems with rough surfaces withΔm=m0 ∈ ½0.031; 0.500�.
Figure 1(a) is the schematic of our experiment setup.

The shear cell has a cuboid shape with a size of
120 mm ðxÞ × 120 mm ðyÞ × 140 mm ðzÞ, where the bot-
tom and side walls are rendered rough by gluing a layer of
hemisphere particles at random positions to prevent crys-
tallization. The cyclic shear is generated by a step motor
attached to the bottom plate of the shear cell. See Ref. [28]
for further details of the setup. For each measurement, a
packing in the shear cell contains ∼12 000 particles of a
height ∼22d. For better statistics, we manually immerse
100 HPs with a specific Δm uniformly in the packing
within a height interval of 8–12d initially. The HPs are

spaced sufficiently apart from each other to avoid any
collective effect. Furthermore, to investigate the influence
of pressure p on the dynamics of the system, we perform
experiments on the packings either with a free upper
surface or covered by a lid of mass M of 1.95 or
3.85 kg. Correspondingly, the average imposed pressure
at the HPs’ height is directly measured to be
p ¼ 0.35� 0.07, 1.67� 0.10, and 2.86� 0.17 × 103 Pa
(see Supplemental Material [29] for more details).
The cyclic shear is applied with a strain rate of

_γ ¼ 0.33 s−1 and different strain amplitudes γ ¼ 0.03,
0.05, 0.08, 0.12, and 0.20. The inertial number is on the
order of 10−4 for all cases investigated, so that the shear is
quasistatic [30]. For each value of γ, we shear the initial
system for hundreds of cycles until a steady state is
reached. A large γ can lead to a lower steady state packing
fraction. After the system reaches a steady state, we obtain
its packing structure via a medical CT scanner (UEG
Medical Group Ltd., 0.2 mm spatial resolution) after every
ten shear cycles. A total of 200 CT scans for the systems
with smooth surfaces and 150 CT scans for the systems
with rough surfaces are taken for each γ and Δm. To further
improve the statistics, we repeat the measurements for each
type of HPs 3 or 4 times. Following the image processing
procedures and tracking algorithms of our previous study
[28], one can obtain the centroid coordinates with an error
less than 3 × 10−3d of each particle. In the following, only
particles that are at least 3d away from the boundary of the
shear cell are analyzed.
For the system with a free upper surface and of

particles with smooth surfaces, the trajectory of a HP
(Δm=m0 ¼ 0.376) under cyclic shear (γ ¼ 0.05) is shown
in the inset of Fig. 1(b). It is clear that a HP displays both
diffusive motion and vertical directional motion under
cyclic shear, analogous to the dynamics of a Brownian
particle subject to a directional force in a thermal liquid.
The one-dimensional diffusive motion of a thermal
Brownian particle can be characterized by the mean
squared displacement (MSD), h½zðtÞ − zð0Þ�2i ¼ 2Dt,
where D is the self-diffusion coefficient. If an external
force F is applied to the particle, the particle will expe-
rience a viscous drag force from the liquid and the balance
of the two forces will lead to a long-term average direc-
tional motion with constant velocity hzðtÞ − zð0Þi=t ¼ BF,
where B is the mobility. According to the Einstein relation,
a temperature independent of F and the Brownian particle
can be obtained by kBTFD ¼ D=B. The diffusive and
vertical directional motion of HPs in our sheared granular
system can be connected by a TFD basically the same way
[17,31]. In the following, we denote t the shear cycle
number and set kB ¼ 1 for brevity.
We note that the vertical displacements of HPs include

both the buoyant motion with respect to the BPs and a
convective flow. This is manifested by the significantly
enhanced vertical displacements of the BPs compared with
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FIG. 1. (a) Schematic of the experimental setup. (b) Average
displacements hri in three directions for hollow particles (HPs)
and background particles (BPs) as a function of t. Inset: trajectory
(length t ¼ 1000) of a HP under cyclic shear. Results in (b) are
for the systems with smooth surfaces, free top surface, γ ¼ 0.05,
and Δm=m0 ¼ 0.376.
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those along the other two directions [Fig. 1(b)]. To obtain
the mean relative displacement Δzrela of the HPs, we
subtract this convective motion of the BPs, that is, their
average vertical displacement. The resulting Δzrela depends
on the time interval Δt for all HPs linearly, from which a
mobility B can be properly defined:

ΔzrelaðΔtÞ¼hzrelaðt0þΔtÞ−zrelaðt0Þi¼BFΔt; ð2Þ

where h…i denotes the averages over all HPs and different
starting shear cycle number t0, F ¼ Δmg is the effective
buoyancy force acting on the HPs [31–33]. Figure 2(a)
demonstrates that HPs with larger Δm have a steeper
increasing of Δzrela versus Δt and the resulting velocity
is linear in Δm if Δm=m0 > 0.079, thus allowing to obtain
the mobility B. Similarly, the diffusion constant D of HPs
can be extracted from their MSD curves:

zrelaðΔtÞ2 ¼ h½zrelaðt0 þ ΔtÞ − zrelaðt0Þ�2i ¼ 2DΔt: ð3Þ

In Fig. 2(b), the MSD curves show a crossover from the
initial subdiffusion to the long-term normal diffusion and
hence we only include data in the diffusive regime to
calculate B and D [insets of Figs. 2(a) and 2(b)]. Note that
F is estimated to be only about 1% of the average contact
force between particles [22], and therefore the buoyancy-
induced directional motions of the HPs are too small to
modify their MSD behaviors in this experiment. As a result,
a temperature TFD based on the Einstein relation can be
obtained for Δm=m0 ≥ 0.079:

TFD ¼ D
B
¼ zrelaðΔtÞ2

2ΔzrelaðΔtÞ=F
: ð4Þ

In Fig. 3(a), we clearly observe that for all Δm the
fluctuations and responses collapse on the same linear

relationship, the slope of which is just TFD. This indicates
that the effective temperature obtained by the fluctuation-
dissipation theorem is a well-defined temperature-like
quantity, which reflects the states and characteristics of
the driven granular system, irrespective of the various mass
difference of the HPs. Moreover, TFD is clearly different for
systems with distinct surface properties for the same
γ ¼ 0.05, see Fig. 3(b). This implies that the packing
structures and the underlying mechanism of exploring the
configurational space of the systems with different surface
roughness are rather different for a same γ. We also check
the dependence of TFD on pressure at γ ¼ 0.05 by varying
the weight of the top lid. We find that, although the
resulting disordered packings remain similar, TFD shows
a clear linear dependence on p, see Fig. 3(b). Note that the
ratio TFD=p has the dimension of volume (in unit of d3),
which implies that granular packings under cyclic shear
relax through free volume [34], reminiscent of compactiv-
ity in the Edwards ensemble.
In the Edwards ensemble, the volume fluctuation of a

steady-state granular packing can be characterized by a
Boltzmann distribution which defines a temperaturelike
quantity, the compactivity χ. In practice, χ can be obtained
by a histogram overlapping method [20], i.e., by calculat-
ing the ratio between probability distribution functions
(PDFs) of the local volume v in a packing and its reference
random loose packing (RLP). As shown in Fig. 4(a), the
RLP states of the systems with distinct surface properties
are different due to their different friction [20]. The
logarithm of the ratio depends linearly on v, the slope of
which is the compactivity χ in unit of the particle volume
[inset of Fig. 4(a)], and its slope depends on the type of
particle. To further examine the quantitative relationship
between TFD and χ, we perform additional experiments
with different cyclic shear amplitude γ under the same free
surface condition. For all systems investigated, we find TFD
varies linearly with χ, with a proportionality factor
TFD=pχ ¼ 0.91� 0.12, see Fig. 4(b). We thus draw the
conclusion that TFD=p equals the compactivity χ within the
experimental uncertainty.
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FIG. 2. (a) Relative vertical displacements Δzrela as a function
of Δt with Δm=m0 ¼ 0.484, 0.376, 0.312, 0.243, 0.200, 0.130,
0.079, 0.047, 0.022, and 0 (from top to bottom). The solid lines
denote a linear fit to the data. Inset: relative vertical speeds
Δzrela=Δt as a function of Δm=m0. The solid lines are the linear
fits to vrela for Δm=m0 ≥ 0.079. (b) MSDs for different Δm=m0

as a function of Δt, where subdiffusion and normal diffusion
regions are marked by the two solid lines. Inset: self-diffusion
coefficient D as a function of Δm=m0. Results in (a) and (b) are
for the HPs in systems with smooth surfaces, free top surface, and
γ ¼ 0.05.
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This equivalence between TFD and the effective temper-
ature defined via the Edwards ensemble has been identified
in theoretical calculations of an aging glass with low heat
bath temperature [17,35–39]. For these systems, the effec-
tive temperatures are closely related to the configurational
entropy (or complexity) defined via the local minima (or
inherent structures) of the energy landscape [40]. The
analogy of these systems can be justified by the fact that
a jammed frictionless granular packing can be mapped onto
a local minimum of the free-energy landscape of hard-
sphere glasses [41]. The equivalence of two effective
temperatures therefore signals that a new type of ergodicity
exists when the system enters the glassy landscape regime.
This equivalence persists in our frictional granular systems,
suggesting that the same ergodicity is preserved despite the
complex frictional forces and dissipative interactions
between granular particles. From this perspective, many
thermodynamic concepts defined on glass systems are still
applicable for dense granular materials.
Despite equivalence between TFD and χ identified above

in our system, we point out that there exists a qualitative
difference between the microscopic mechanisms of the
drag force for the Brownian motion in a granular packing
and an ordinary liquid. In the inset of Fig. 2(a), the steady-
state relative speed Δzrela=Δt of the HPs for Δm=m0 ≥
0.079 shows a linear relationship with the applied buoy-
ancy force, which is analogous to the viscous behavior of
a thermal liquid. However, we also note a distinct behavior
of a simple liquid as vrela increases more quickly if
Δm=m0 < 0.079. We speculate this to be a result of the
different microscopic origin of the drag force in a granular
“fluid” [31,33]. Unlike particles in thermal fluids in which
the viscous drag force is generated by the variation of
velocity distribution of the liquid surrounding the HPs, in a
granular packing, the particles interact through static
contact forces. Simply varying the relative contact sliding

speeds would leave the frictional force unmodified and
therefore it cannot be responsible for the speed-dependent
drag force. Instead, we conjecture that the viscous force
originates from the asymmetric distribution of contacts on
the HP surface. We characterize this asymmetric distribu-
tion by the average contact number in the upper and lower
hemisphere, Zup and Zlow, respectively, for both HPs and
BPs [28,42], see Fig. 5. The results show that for
Δm=m0 < 0.079, the contact distributions of HPs and
BPs are the same. However, for Δm=m0 ≥ 0.079, Zup of
the HPs starts to increase linearly with the mass difference
Δm while Zlow of the HPs remains at the same value as that
of the BPs. We can therefore speculate that an external
“effective drag force” is produced as follows: owing to its
buoyant tendency, HPs tend to pile up the BPs on their top,
hence accumulating a denser “cap” on the upper hemi-
sphere, as shown in the inset of Fig. 5. Assuming that each
contact possesses similar contact and frictional force, this
will generate an average “effective drag force” proportional
to the asymmetry of contact distribution. This can also
naturally explain why there exists a qualitative difference of
the viscous behavior when Δm=m0 is below or above
0.079. When Δm=m0 is small, there exists no significant
asymmetry in the contact structure and the viscous drag
force is mainly generated by mobilizing the frictional
contacts; when Δm=m0 is sufficiently large, all the fric-
tional contacts around the HP are mobilized, and the
viscous force is then generated by the asymmetric distri-
bution of frictional contacts on the particle surfaces.
In summary, using x-ray tomography, we have presented

the first experimental evidence that the two types of
effective temperatures derived from the FDR and
Edwards volume ensemble, coincide with each other in a
driven frictional granular system. This finding is robust
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with respect to different types of hollow particles, cyclic
shear amplitudes, and even particle surface roughness.
Since granular materials belong to the wide class of
disordered materials, the presented validation of the con-
cept of effective temperature consolidates the very foun-
dation of related rheological theories, like shear
transformation zone [9] or soft glass rheology [10], in
which the effective temperature plays a crucial role in
connecting the microscopic or mesoscopic information
with the macroscopic plasticity or complex flowing. In a
broader sense, our Letter enlightens the relationship
between disordered materials and their transport properties
using a statistical mechanics framework for general non-
equilibrium systems.
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