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We perform combined x-ray tomography and shear force measurements on a cyclically sheared granular
system with highly transient behaviors, and obtain the evolution of microscopic structures and macroscopic
shear force during the shear cycle. We explain the macroscopic behaviors of the system based on
microscopic processes, including particle level structural rearrangement and frictional contact variation.
Specifically, we show how contact friction can induce large structural fluctuations and cause significant
shear dilatancy effect for granular materials, and we also construct an empirical constitutive relationship for
the macroscopic shear force.
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Dense granularmaterials exhibit complex behaviors upon
shear. Notable examples include significant dilatancy [1],
formation of shear bands [2], emergence of anisotropic force
networks [3], and critical state [4]. However, the theoretical
understanding of sheared granular materials remains very
challenging since conventional continuummechanics are no
longer applicable due to the disordered nature of granular
materials, as well as the complex role friction plays [5,6]. In
practice, empirical constitutive theories are normally
employed, including the famous Mohr-Coulomb criterion
[7] and more sophisticated viscoplastic models [8].
However, these models are mainly macroscopic ones with
little microscopic basis despite the fact that it is well known
experimentally that microscopic structure and dynamics can
strongly influence the macroscopic response [9]. Granular
materials belong in general to the family of disordered
materials like metallic and colloidal glasses, foams, emul-
sions, etc., and physicists have tried to treat the flow of dense
granular materials within the general framework of disor-
dered materials [9]. For example, theories based on free
volume [10], shear transformation zone [11], and soft glass
rheology (SGR) theories [12], which are built upon micro-
scopic and mesoscopic information to predict the plastic
behaviors of certain disorderedmaterials, have been directly
applied to the granular case [13,14]. However, granular
materials possess some peculiar properties, e.g., force chains
[15,16], significant volume and stress fluctuations [6,17,18],
and complex microscopic dynamics [19], which are not
shared among all disordered materials. These properties are
mainly induced by the frictional interparticle contacts.
Therefore, to construct the correct constitutive theory for
the flow of dense granular materials, physics on particle and
contact levels have to be considered [20].
In this Letter, we apply cyclic shear to a three-dimensional

(3D) disordered granular system. The system displays

highly transient dilatational behavior and mechanical
response since the system always has to reorganize upon
sudden shear reversal [14,21]. By combing x-ray tomo-
graphy and shear force measurements, we obtain both
microscopic structure evolution and macroscopic mechani-
cal response of the system simultaneously. Based on
these results, we can explain the macroscopic behaviors
of sheared granular matter through the microscopic struc-
tural information including both particle level structural
rearrangement and frictional contact evolution. We can then
understand why granular materials demonstrate significant
shear dilation as compared to other disordered materials,
and also construct an empirical constitutive relationship to
account for the macroscopic shear force behavior.
Our granular system consists of bidisperse smooth

plastic beads (μ ¼ 0.4, diameters 5 and 6 mm, 7000
particles of each size). The bidisperse nature ensures no
crystallization occurs in the system. The particles are
placed in a shear cell mounted on a linear stage as shown
in Fig. 1(a). The shear cell is in simple shear geometry
and has an inner dimension of 24d × 24d × 24d, where
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FIG. 1. (a) Schematic of the experimental setup: granular
packing is sheared by the motor on the linear stage, and the
macroscopic shear force is measured by the force sensor.
(b) Evolutions of the global volume fraction ϕ and shear force
F within one cycle (ensemble averaged over 12 realizations).
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d ¼ 5 mm is the small particle’s diameter and is set as the
unit length. A lid that can freely translate vertically is
placed on top of the particle packing (3.6 kg, about 3 times
of the total particle weight) to maintain a constant pressure
and reduce the vertical pressure gradient. Shear is generated
by a stepping motor attached to the bottom plate of the
shear cell through a linear stage. A force sensor (IMADA
ZTS-50N) connecting the motor and the stage is used to
measure the shear force.
We prepare the initial state of the system by applying

thousands of cyclic shear cycles which ensures that a steady
state is reached [19]. The shear strain amplitude we apply is
γ ¼ 0.167 and the strain rate is _γ ¼ 0.25 s−1. The corre-
sponding inertial number is I ¼ _γd=

ffiffiffiffiffiffiffiffi
P=ρ

p ¼ 3 × 10−4,
suggesting that the system is in a quasistatic regime.
After the initial preparation, we divide one shear cycle
into 80 steps and an x-ray tomography scan is performed
after each shear step through a medical CT scanner (UEG
Medical Group Ltd., 0.2 mm spatial resolution). Following
similar image processing procedures as previous studies
[22], the sizes and positions of all particles are obtained
with an uncertainty less than 3 × 10−3d through a maker-
based watershed segmentation technique. Using the particle
tracking algorithm [23], we can then extract the trajectories
and contact geometries of all particles. Simultaneously, the
shear force is measured at a frequency of 0.23 s−1 and with
an accuracy of 0.1N. For better statistics, the measurements
are repeated for consecutive 12 shear cycles. More details
about the experimental setup and the image processing
procedures can be found in [23].
We calculate the global volume fraction ϕ based on

radical Voronoi tessellation [24]: ϕ ¼ P
Vg=

P
Vvoro,

where Vg and Vvoro are each particle’s volume and
corresponding Voronoi cell volume. To exclude the
boundary effect, the structural analysis only involves
particles that are at least 2d away from the boundary of
the shear cell. Figure 1(b) shows the evolution of ϕ and
shear force F of the system within one cycle. Starting
from the initial symmetric state (shear strain γ ¼ 0), ϕ
decreases as the strain γ increases, then ϕ returns to
almost the same initial value as the shear is totally
reversed with small hysteresis. The similar behavior is
repeated for the other half shear cycle. While for the
shear force F, starting from the symmetric state, it
increases as the strain γ increases; at the shear reversal
point, F changes its direction and its magnitude drops
abruptly to almost zero, then it increases monotonically
till the next shear reversal point.
Empirical constitutive relations are ordinarily employed

to account for macroscopic behaviors, e.g., ϕ and F, of
sheared granular materials [8]. However, it is important to
develop theories which construct these relations based on
microscopic information [25]. Following this approach, we
characterize the microscopic structure of our system by
Delaunay tessellation and extract the microscopic origin of

macroscopic behaviors by analyzing the structural and
topological evolutions of the Delaunay network upon shear.
Delaunay tessellation partitions the packing structure

into nonoverlapping tetrahedra, whose vertices are the
centers of four neighboring particles. Upon shear, as the
structure of the system varies, the corresponding Delaunay
tetrahedra distort gradually and are destroyed when local
neighbor switching process occurs, which changes the local
topology of the network [22]. We use N-ring structure, i.e.,
a tetrahedral group consisting of N tetrahedra sharing one
common edge, instead of tetrahedron to characterize the
topological change and distortion of the Delaunay network.
This is owing to the fact that physically N-ring structures
are presumed to be closely related to glass transition in
disordered materials, where 5-ring structures are consid-
ered as the glass order and other N-ring structures as
disclination defects in spherical particle systemswithout too
much polydispersity [26]. Each topological change, or flip
process [22], corresponds to the creation or destruction of
N-ring defects while its relationship with tetrahedron is less
straightforward.N-ring analysis can therefore help establish
a physically intuitive understanding of topological change
or rearrangement-induced global volume variation based
on the creation or destruction of N-ring defects. Moreover,
since each N-ring structure is simply an assembly of
tetrahedra, so analysis of the distortion process of
Delaunay network remains the same based on either N-ring
structure or tetrahedron.
We first show how topological rearrangement and dis-

tortion of N-ring structures can lead to the global volume
variation of our system. As shown in Fig. 2(a), upon shear,
the fraction of different N-ring structures fN-ring (the
number ratio between a specific type of N-ring structures
and all types) evolves with γ. Within one cycle, the overall
trend is that the fraction of 5-ring structures decreases as
the system moves away from the symmetric state and the
fractions of 3-, 4-, and 7-ring structures increase corre-
spondingly, while the fraction of 6-ring structures remains
nearly constant during the cycle. Nevertheless, variations
are less than 2% from the symmetric state. For disordered
materials, excess volumes are ordinarily related to defective
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FIG. 2. (a) Variation of fractions of N-ring structures ΔfN-ring
within one cycle with respect to the symmetric states (γ ¼ 0),
where ΔfN-ring ¼ fN-ringðγÞ − fN-ringðγ ¼ 0Þ. (b) Volume change
ΔVglobal and ΔV topo (inset) within one cycle.
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structures [13]. This is consistent with the observation that
an increase of the total volume of the system ΔVglobal

[Fig. 2 (b)] is correlated with the increase of defective
(3-, 4-, 6-, 7-) N-ring structures [Fig. 2(a)] and the decrease
of 5-ring structures. To quantify the volume change
associated with topological rearrangement, the excess
volume of each type of N-ring defective structures needs
to be obtained. We show subsequently that the appearance
of defective structures can be viewed as the excitation
process governed by certain effective temperature, similar
to the framework of shear transformation zone theory of
disordered materials [11].
Since our system has reached steady state by initial

preparation, we adopt the granular thermodynamic frame-
work originally developed by Edwards and co-workers [27].
Within this framework, volume plays the role similar to
energy in ordinary thermal system and an effective granular
temperature, i.e., compactivity χ, can be obtained based on
its fluctuation. We find the use of an effective granular
temperature can greatly help us understand our experimental
observations.
Following the method proposed by Aste [28], we obtain

compactivity χ based on the free volume vf distribution
of Delaunay tetrahedron, where vf ¼ vT − vg, vT is the
volume of each Delaunay tetrahedron, and vg is the
corresponding volume of particles within the Delaunay
tetrahedron. If the system is in thermal equilibrium
based on Edwards statistical framework and under the
constraint of constant total volume, the probability of
finding a tetrahedron possessing a specific free volume vf
should follow an exponential distribution, as can be derived
from standard statistical mechanics [28]. As shown in
Fig. 3(a), indeed the exponential behavior is found in the
probability distribution function (PDF) of the tetrahedron in
the large free volume region. This exponential behavior
remains robust within the whole shear cycle albeit its slope
varies. The slope change corresponds to the variation of
the compactivity χ and its evolution within one cycle is
shown in the inset of Fig. 3(a). Nevertheless, the PDFs are
not exponential in the small volume regime which remains
unchanged upon shear. This is due to the fact that the
distributions of these small volume tetrahedra are mainly
governed by the mechanical stability of the local Delaunay
network topology and are less related to χ [28].
Analogous to the thermal excitation of point defects in

crystals, we presume that the numbers of different N-ring
structures are governed by χ and follow Boltzmann dis-
tribution depending on their respective excitation volumes
[29], i.e., NN-ring=N5-ring and −1=χ satisfy

NN-ring

N5-ring
∼ exp

�
−EN-ring

χ

�
; ð1Þ

where NN-ring is the number of respective N-ring structure
and EN-ring is its corresponding mean excitation volume

from the 5-ring ground state in our system. In Fig. 3(b), we
plot NN-ring=N5-ring as functions of −1=χ on a semiloga-
rithmic plot. All relationships are clearly linear which is
compatible with the existence of the Boltzmann distribution
and the thermal excitation scenario. We extract the exci-
tation volume EN-ring of each type of N-ring structure by
fitting the slopes of the curves and obtain the corresponding
excitation volume for 3-, 4-, 5-, 6-, and 7-ring structures as
0.023, 0.008, 0, 0.004, and 0.023 d3, respectively. After we
obtain EN-ring, we then calculate the total excitation volume
resulting from the population change of different N-ring
structures: ΔV topo¼

P
EN−ring ×ΔNN−ring,where ΔNN-ring

is the number change of each type of N-ring structure from
the symmetric state. The result is shown in Fig. 2(b) and
counterintuitively, we find that only 10% of the total
volume change ΔVglobal originates from ΔV topo.
The rest volume change instead results from the mean

free volume change of N-ring structures induced by
Delaunay network distortion. We calculate the normalized
mean N-ring structure free volume hVfiN-ring by dividing
the mean free volume of each type of N-ring structure with
its respective mean total volume. As shown in Fig. 3(d), we
find that hVfiN-ring depends linearly on χ for all N-ring
structures. Other than the intercept differences between
different lines, the slopes are almost the same. If we simply
fix the number of different N-ring structures during shear
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FIG. 3. (a) Probability distribution functions of the Delaunay
tetrahedron free volume vf at γ ¼ 0 and γ ¼ 0.167. The solid
lines denote the exponential fittings on tails. Inset: evolution of
the effective temperature χ within one cycle. (b) Relationship
between Δ lnðNN-ring=NN-ringÞ and −1=χ. All lines are shifted
vertically to have zero intercepts on the vertical axis. (c) Prob-
ability distribution functions of Delaunay tetrahedron free vol-
ume vf of different N-ring structures at γ ¼ 0.167. Inset:
evolution of effective temperatures for different N-ring structures
within one cycle which are obtained from exponential fittings of
their respective tails in the main plot. (d) Relationship between
hVfiN-ring and χ for different types of N-ring structures.
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and only monitor the total volume change using above
linear relationship with χ, we find it makes up the 90%
volume change not accounted for by topological rearrange-
ments. We note that this behavior is not accidental and
originates from the behaviors of constituting tetrahedra. As
shown in Fig. 3(c), we plot the PDFs of volume vf of
tetrahedra which make up each type ofN-ring structure. We
find that in the small vf region, the PDFs of all N-ring
structures do not change with χ; in the large vf region, the
PDFs of all N-ring structures exhibit same slope exponen-
tial tails governed by χ [inset of Fig. 3(c)]. As χ increases
upon shear, the fractions of tetrahedra possessing large vf
increase which leads to the increase of mean free volume of
N-ring structures.
Physically, the variation of mean free volume of N-ring

structures originates from a contact-friction-induced fluc-
tuation effect: upon shear, due to the presence of contact
friction, topological rearrangement among different N-ring
structures does not happen instantaneously [19,22].
Instead, N-ring structures will gradually distort before a
topological rearrangement occurs. These friction-stabilized
highly distorted structures can induce large volume fluc-
tuations, as is clear from above observation that the average
volume change among different N-ring structures (topo-
logical rearrangements) is actually quite small as compared
to the friction-induced distortion effect. To quantify the
magnitude of this fluctuation effect, we find that the
dimensionless effective temperature of our system is
around 0.02 which is significantly larger than the values
of other sheared disordered systems [30,31] (normally on
the order of 10−3). Specifically, the dimensionless effective
temperature is obtained by normalizing the energy scale of
the effective temperature pχ ¼ 0.02pd3, by the energy
required to move one particle by its own diameter which is
about pd3, where p is the pressure. The one order of
magnitude difference suggests that friction can signifi-
cantly enhance fluctuations in granular systems and can
explain why granular materials exhibit much larger shear
dilatancy effect than frictionless hard sphere system [32]
and other disordered materials [30,31], since topological
rearrangement is the only mechanism for dilation for those
materials.
Other than volume, we also seek the microscopic

structural origin of macroscopic shear force response
through the evolution of the Delaunay network. For
disordered systems, macroscopic shear stress is normally
related to the plastic processes induced by topological
rearrangements [33]. However, in sheared granular materi-
als, energy dissipation happens both as the local structure
undergoes a topological rearrangement and frictional con-
tact evolution [34], the macroscopic mechanical response
can be reasonably understood only after considering both
processes. In the following, we show that an empirical
constitutive relationship can well explain the global shear
force variation using microscopic structural information

including both topological rearrangement of the Delaunay
network and contact fabric evolution induced by Delaunay
network distortion.
Local topological rearrangements not only induce vol-

ume fluctuations, but they also relax stress in the system
and therefore should be strongly correlated with macro-
scopic shear force. This correlation has been identified
previously as we found that topological rearrangements or
flip events mainly occur along principal stress directions
[22]. Before establishing the relationship between topo-
logical rearrangement and shear force F, we note that both
of them have orientations and a full analysis will need a
tensorial description. To develop a full thermodynamic
theory for the shear force, a tensorial effective temperature,
e.g., angoricity, based on microscopic stress fluctuations
[27], has to be defined, which is clearly beyond the
capability of our x-ray technique. Instead, we simplify
this tensorial treatment into a scalar one by using a two-
state approximation analogous to previous studies [33].
Specifically, we classify all topological rearrangements into
two orientation groups according to whether the angle
between their orientations and one principal stress direction
is smaller than with the other one. We then assume that
there exists a simple proportional relation between the
number of topological rearrangements with principal stress.
Since shear stress is the difference between two principal
stresses, we also calculate the net topological rearrange-
ment number curve Ntopo by calculating the number
difference of the two topological rearrangement orientation
groups, as shown in Fig. 4(a) (see Supplemental Material
[23] for more details). Comparing the Ntopo curve with the
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FIG. 4. (a) Evolution of Ntopo within one cycle. The arrows are
guides to eye to show the increasing trends of Ntopo just before
and after shear reversal which is analogous to the behavior of
shear force F in (c). (b) Evolution of the Axz component of the
fabric tensor within one cycle. (c) Shear force behavior within
one cycle and the corresponding empirical fitting using Ntopo and
Axz. (d) The respective contributions of Ntopo and Axz to shear
force F, denoted by FðNtopoÞ and FðAxzÞ.
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shear force F evolution [Figs. 4(a) and (c)], we find that the
significant hysteretic behavior of Ntopo, the rapid increase
of Ntopo just before shear reversal, and the abrupt drop of it
after shear reversal, as shown in Fig. 4(a), are analogous to
the behavior of shear force F in Fig. 4(c). However, Ntopo

does not match the upward sloping trend of F.
To account for this disparity, we also have to take

Delaunay network distortion-induced contact level variation
into account. It is reasonable to presume that the stress
variation is linearly related to thevariation of contact network
as normally characterized by fabric tensor [21,35,36]:

A ¼ 1

Nc

XNc

α¼1

nα ⊗ nα − 1

3
I; ð2Þ

whereNc is the total number of contacts, n is the unit contact
normal vector from center to center of two particles in
contact, and I is the unit tensor. This analysis only applies for
particles with at least two contacts.We notice that the contact
evolution of the system is mainly in Axz component.
Therefore, we only use this component to approximate the
contact evolution of the system, and its upward sloping trend
is consistent with the behavior of F, as shown in Fig. 4(b).
To account for the complex shear force behavior within

one cycle, we assume that both particle level topological
rearrangement and contact evolution contribute linearly to
the shear force F to the first approximation. We adopt an
empirical fitting procedure to understand their individual
contributions. We normalize the Ntopo and Axz curves by
setting the variation ranges of them to be unity and do the
following fitting:

F ¼ a × Ntopo þ b × Axz: ð3Þ

The fitting result is shown in Fig. 4(c) with the corre-
sponding fitting coefficients a¼47.4N and b¼36.7N,
and their respective contributions are shown in Fig. 4(d).
From the fitting, it is clear that the shear force behavior can
be well accounted for after taking into account both
topological rearrangement and contact evolution informa-
tion. Specifically,Ntopo can explain the significant hysteresis
of F and its rapid variation around the reversal points, while
Axz plays a more important role in matching the upward
sloping trend of F.
In summary, by taking the friction-induced effect into

consideration, combined with the knowledge of particle
level topological rearrangements, we can explain the highly
transient global volume and the shear force variations of a
cyclically sheared granular system. This experimental
finding reconciles previous theoretical approaches focusing
only on particle or contact scales physics and therefore is a
significant step forward to the understanding the flow of
dense granular materials [37]. It is worth noting that in our
system, the majority 90% volume variation is caused by the

contact-friction-induced Delaunay network distortion and
the remaining 10% is induced by topological rearrange-
ments. The importance of the contact friction effect is also
reflected in the contribution of contact fabric tensor to the
empirical constitutive relationship. However, it is obvious
that the specific fraction of contributions from these
two microscopic mechanisms should be strongly correlated
with the microscopic friction coefficient of granular
particles which will be system dependent. It will be
interesting to investigate the relative importance of these
two mechanisms by varying the friction coefficients of
particles in future studies.
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